Estimating Milling Time

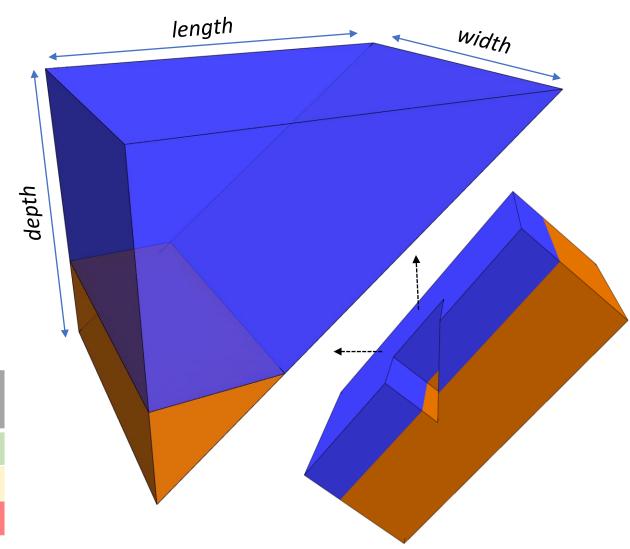
Milling rate depends on:

- Beam Current
- Volume to be milled
- A material-unique constant (volume/dose, 'V/d'):

Table 5-7 Material Sputter Rates at 30 kV

Material	Volume per Dose [[Material	Volume per Dose [µm³ / nC]
С	0.18	Au	1.50
Si	0.27	MgO	0.15
AI	0.30	SiO ₂	0.24
Ti	0.37	Al ₂ O ₃	0.08
Cr	0.10	TiO	0.15
Fe	0.29	Si ₃ N ₄	0.20
Ni	0.14	TiN	0.15
Cu	0.25	Fe ₂ O ₃	0.25
Мо	0.12	GaAs	0.61
Та	0.32	Pt	0.23
W	0.12	PMMA	0.40

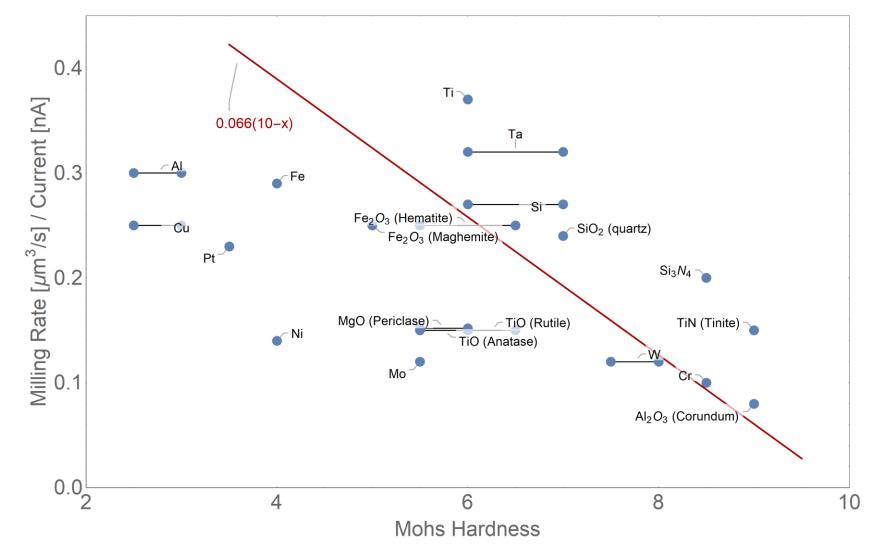
$t_{\text{mill}}[\text{min}] =$	$(1min/60s) * V[\mu m^3]$			$(depth[\mu m])^3$	
	$\overline{(V/_d)}$	$\left[\frac{\mu m^3}{nC} \right]$	*I[nA]	$73 * {\binom{V}{d}} * I[nA]$	


Volume rules of thumb

Cross-section milling generates a wedge (min. volume to expose face to ebeam): $V_{mill} = 1/2 \ l^*w^*d$

- w≈l
- I ≥ d*tan(52)
- $V_{mill} \approx 0.82 d^3$

Example calculations for various materials and depths

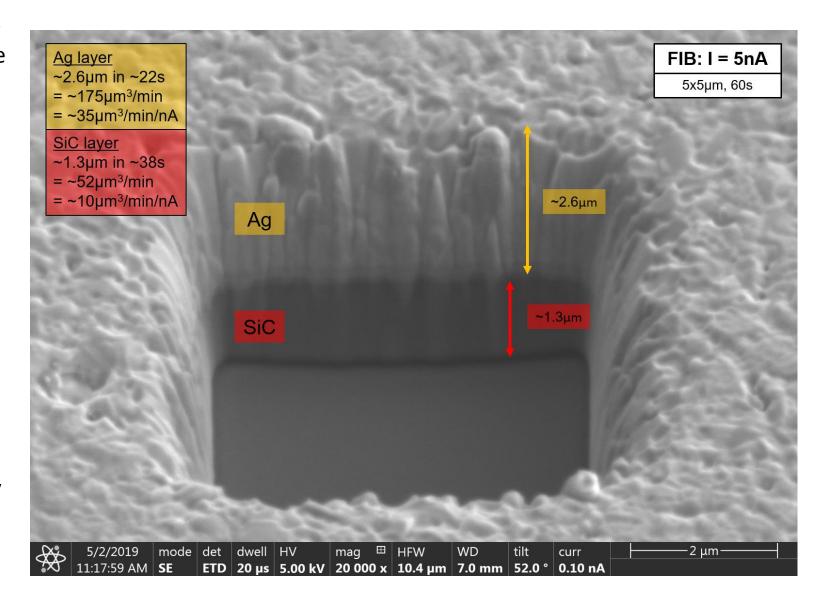

Z	(V/d)	q [μm³/s]	t _{mill} [min]	time (d=5μm)		time (d=100μm)
Au	1.50	97.5	d ³ /7135	1 s	1 min	2.5 hr
Al	0.30	19.5	d ³ /1427	5 s	5.5 min	12 hr
Al_2O_3	0.08	5.2	d ³ /381	20 s	21 min	44 hr

Estimating Milling Time

The listed sputter rates have a roughly ~linear dependence on the hardness. So, for materials not listed, but which have known hardnesses, the sputtering time can be estimated by:

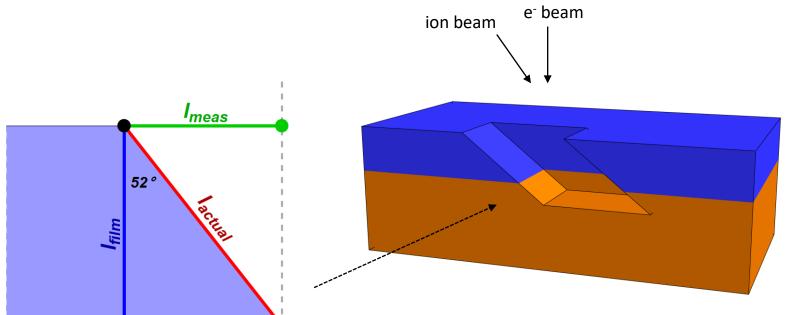
$$t_{\text{mill}}[\text{min}] \approx \frac{(depth[\mu m])^3}{4.83 * (10 - Mohs) * I[nA]}$$

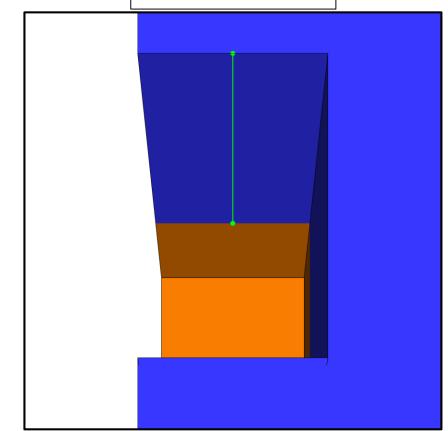
Table 5-7 Material Sputter Rates at 30 kV


Material	Volume per Dose [µm ³ / nC]	Material	Volume per Dose [µm³ / nC]
С	0.18	Au	1.50
Si	0.27	MgO	0.15
AI	0.30	SiO ₂	0.24
Ti	0.37	Al ₂ O ₃	0.08
Cr	0.10	TiO	0.15
F e	0.29	Si ₃ N ₄	0.20
Ni	0.14	TiN	0.15
Cu	0.25	Fe ₂ O ₃	0.25
Мо	0.12	GaAs	0.61
Та	0.32	Pt	0.23
W	0.12	PMMA	0.40

Estimating Milling Time

For unknown materials (or for a more precise value), a short preliminary test can determine milling rate:


- Mill a small square (~5x5μm) in a test region for 60s
- Measure the depth achieved
- $(V/d)[\mu m^3/nA/min] = 25*depth[\mu m]/I[nA]$


- In the example to the right, using the Moh's value for Ag (2.5-3) yields a very similar milling rate compared to what we see experimentally (~31 vs ~35 μm³/min/nA)
- o Conversely, the predicted rate for SiC (Moh's 9-9.5) is significantly lower than what we actually see (3 vs $10\mu m^3/min/nA$)

Oblique Milling (ie milling w/o tilting the sample perpendicular to the ion beam). Useful for:

- Samples that aren't easily tilted
- Analysis of very fine films angled cut elongates the exposed cross-section

View from e⁻ beam

Requires measuring the thickness of an exposed film via this method requires **manual** conversion. Using the length acquired without any tilt correction, use the following:

$$l_{act} = \frac{l_{meas}}{\sin(52^\circ)} = 1.27 * l_{meas}$$

$$l_{film} = \frac{l_{meas}}{\tan(52^\circ)} = 0.78 * l_{meas}$$